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Outline

● The DUNE experiment
● Expected FD spectra
● Sensitivities and systematics in the DUNE CDR
● Capabilities of a DUNE FD only fits & 

propagating detailed systematic uncertainties
● Program to constrain systematic uncertainties
● Propagating constraints from the DUNE ND
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The DUNE Experiment
● LBNF

– Built and operated by FNAL

– Beam
● Wideband beam, peaked at   

2.5 - 3.0 GeV
● Uses 60 - 120 GeV protons 

from the Main Injector
● PIP II upgrades enable a 1.2 

MW beam
● Upgradeable to 2.4 MW
● Ongoing optimization of target, 

horns, etc to improve flux rates 
and shape 

– Conventional facilities
● Near Detector complex
● Far Detector complex

†See talk by Jim Strait for more details
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The DUNE Experiment
● DUNE

– The experimental collaboration

– Responsible for building an 
operating the Near and Far 
detectors

– Baseline: 1300km

– Exposure: 300 - 600 kton·MW·yr

– Far Detector
● 40 kton LArTPC
● Single or dual phase design
● Staged construction

– Near Detector
● Fine grained tracker (FGT)
● Low density
● Superior PID
● High energy and angle resolutions

†See talk by Jim Strait for more details

Dual-Phase
10 kton 
module

Single-Phase
10 kton 
module

FGT
Near

Detector
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Expected FD Spectra
● Spectra produced by a Fast MC
● Fast MC inputs:

– Full G4LBNE flux simulation

– GENIE cross sections and FSI

– Parameterized detector response 
applied to individual particles that exit 
the nucleus

– Event selection based on PID of lepton 
candidates

● Fast MC outputs (all event-by-event):

– Reconstructed quantities e.g. E, Q
2, 

W2, x, y, etc

– Etrue → Ereco smearing functions

– Efficiencies for signal and backgrounds

– Weights for most sources of systematic 
uncertainty and spectral response 
functions
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Expected FD Spectra
● Assumed exposure:

– 40 kton LAr TPC FD

– 1.2 MW beam
● NuMI style horns
● 120 GeV protons
● Many possible optimizations

– 6 yr  / 6 yr  (56% up time)

● Oscillation Parameters
– NuFit 2014 NH results

– Choose cp = 0

● Opposite effects on  and  
spectra for cp→ ± /2

-/2

/2

-/2
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Expected FD Spectra
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Spectra By Cross Section Model

Quasi-elastic Resonance Production

DIS (W < 2.7 GeV) DIS (W > 2.7 GeV)
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Spectral Differences:
e
 Appearance

Normal Hierarchy Inverted Hierarchy

1
st  Max

2
nd  Max
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Determining CDR Sensitivities 
● Define CPV sensitivity as:

 2
CPV = Min( 2

test(cp=0), 2
test(cp=) ) - 2

true  

● Define MH sensitivity as:

 TNH(IH) =  2
IH(NH) -  2

NH(IH) 

● Use Asimov data sets; gives mean 2

● Allow oscillation parameters, and systematics to vary

– Constrain oscillation parameter values with NuFit2014 results; use 1/3rd of the 3  ranges

– Estimate non-oscillation systematics with normalization parameters

– Consider channel-to-channel and sample-to-sample correlations

Signal uncertainties of
5% on  disappearance

and
52% on 

e
 appearance 

assume a relative 
calibration in the 
4-sample fits
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Normalization uncertainties
● Estimate uncertainties after ND 

and external data constraints
● Understand advantages of LAr 

TPC, and cancellations in FD 4-
sample fits

● Consider experience from T2K 
and MINOS
– MINOS similarities

● Flux shape,  energies
● Longer baseline
● Similar cross sections

– T2K similarities
● Different near and far detector 

technologies
● Similar analysis strategies

– Strategies to address required 
increase in precision
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Effects of Changing the Relative 
e
 

to  Uncertainties
● Increased relative 

uncertainty barely 
effects MH 
determination

● The effect on CPV 
sensitivity is 
greater, esp at the 
peaks

● Beam optimization 
is as important as 
systematic 
uncertainty 
reduction

MH
(100% of 

cp
)

CPV
(50% of 

cp
)

CPV
(75% of 

cp
)

Optimized 
beam

Reference 
beam
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Understanding Sensitivities 



1






● Careful attention must be paid 
to the statistics of MH 
determination (above)

● CPV sensitivity can be 
understood by considering the 
resolution on cp (left) 
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Far Detector Capabilities

● The FD analysis will be preformed with 4(+) analysis sample 

– e appearance

– e appearance

–  disappearance

–  disappearance

● Shifts in cp will effect each of these samples differently

● Systematics will often effect all 4 samples similarly
● Combined fits to the 4 samples will implicitly constrain many sources of systematic 

uncertainty

● Dangerous systematics must be able to mimic the effects of shifting cp for all 4 
samples

● Need the ability to propagate detailed uncertainties to fits
● Studies are not to determine if a ND is needed, but to understand the design 

requirements to ensure it is able to compliment the capabilities of the FD
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Sources of Uncertainty

● Oscillation Parameter Uncertainties (NuFit14) & Exotics
● Flux (alter G4LBNE parameters) 
● Cross section models (GENIE)
● Nuclear models (Intranuke, or absorbed in cross sections)
● Detector response and reconstruction (lepton/hadron, bias/spread)

● Projecting uncertainties to the DUNE error can be difficult
– Relatively new (far) detector technology

– Beam and ND design have yet to converge

– Broad R&D research program is just getting underway

– More data will help … unless of course there is tension between results 
and/or with theoretical predictions and generators
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Uncertainty “Highlights”

● For systematics to be dangerous they must be able to replicate the effects of shifting 
cp in all 4 analysis samples

● Absolute flux normalization and shape
– Secondary and tertiary hadron production

– Flux shape differences at the Near and Far detectors

● Uncertainties from cross section models and nuclear initial state models need to be 
factorized

● A coherent picture of nuclear initial state effects is required
● Cross section flavor differences and rates for exclusive final state channels require 

theoretical input
● The convolution of flux, cross section, FSI and detector effects in determining 

energy scale will be difficult to untangle

– Both FSI and detector effects can be different for  and 
– Relative / uncertainties currently provide freedom to mimic cp-like effects

● Biases in the energy scale from mis-reconstruction and/or poorly 
modeled/constrained missing energy (neutrons) must be eliminated
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Propagating Individual Systematics

● For example: 

– Fluctuation of MA
res by +1 

– Induces an effect similar to 
changing cp

● However …

– The effect on e appearance from 
changes in MA

res is the same

– But the effect of the same shift in 
cp is opposite

– Also the high statistics  
disappearance sample will help 
constrain – no effect from cp

† Systematics are propagated to spectra via 'response functions' calculated from   
   Fast MC event weights
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Propagating Individual Systematics
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Propagating Individual Systematics

Statistical limits of 
constraints?
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Far Detector Capabilities
● We See this same 

behavior for many 
systematics

● How correlated are 
these effects among 
samples?

● Must consider: 
– Cross section ratio 

constraints

– Differences in detector 
response

– Statistical power of 
dominant constraint

– NC/CC, e / ,  / , 
 / 

Lepton E-scale Bias (2.5%) Nucleon Mean Free Path



  21

Cross Section Ratio Uncertainties

● All fits include cross section ratio 
uncertainties

● The uncertainty on each ratio can 
be set individually

● So far, no energy dependence 
allowed

● Default values:

– (/) = 10%

– (e/) = 2.5%

– () = 10%

● Can study the effect of changing 
the values for each parameter

● Additional fit parameters to 
include statistical limits of 
constraints 

Example: CC MA
res
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Sensitivity to CPV with
Variations in CC M

A
res

● No oscillation parameter uncertainties
● FD only fits (no ND constraints)

● Allow CC Ma
res to vary by GENIE 1 (±20%)

A
.U

.

A
.U

.


e
- appearance only All 4 samples

Metric: loss of CP 
fraction at some C.L.



  23

Pull Terms for CC M
A

res

● For e only fit (left) the 
pull on CC MA

res is up to 
~0.5 - 1.0  (10-20%)

● The combined fit (right) 
limits the variation to 
~0.2 (4%)

● / difference allowed; 
error on MA

res absorbs 
nuclear effects 

● Multiple systematics 
may introduce 
additional freedom

A
.U

.

A
.U

.

† Oscillation uncertainties   
    included here
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CPV Sensitivity with Variations 
in Cross Section Systematics

● Include several cross section 
systematics
– MA

QE

– MA
res

– Resonance → DIS transition region

– Intranuclear rescattering (FSI) 
parameters

● Include oscillation parameter 
uncertainties

● Cross section ratio uncertainties 
considered

● FD only fits (no ND constraints)
● Overall sensitivity degradation is 

still fairly small

A
.U

.
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CPV Sensitivity with Variations 
in Flux Systematics

● Include several flux 
systematics related to beam 
optics

● Does not include hadron 
production systematics

● Include oscillation parameter 
uncertainties

● Cross section ratio 
uncertainties considered

● FD only fits (no ND 
constraints)

● Larger sensitivity degradation
● ND MUST constrain the flux

A
.U

.
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Constraining the Flux

● Using the DUNE ND
– 2.5% Absolute Flux (0.5 - 10 GeV)

● e- NC cross section
● Low, well constrained bkg

● E limited to ~13% by intrinsic  pT 

– 3% Absolute Flux (10 - 50 GeV)
● e- CC cross section
● 20% well constrained bkg

– 1-2% Relative Flux (0.5 - 50 GeV)
● Low- method

● Very low proton threshold (low-)

● Uncertainty dominated by E resolution

– Relative FHC/RHC flux
● Coherent interactions have same 

cross section for  and  

● Beamline monitoring
– Muon monitors

– Hadron monitors

● External Data
– Hadron production

● Thin target, thick, and/or replica target
● Data from NA41, NA61, and MIPP
● Still hard to constrain secondary and 

tertiary reactions

● Challenges: 
– Modeling of Far/Near spectral 

differences

– Intrinsic  pT at the ND
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Constraining Cross Section Models

● The DUNE ND
– High precision flux measurements 

remove leading error source

– High statistics inclusive samples 
across all  flavors + NC

– Multiple nuclear targets including 
40Ar

– Superior Vertex resolution: 
● Sub mm resolution, multi-track 

events
● Statistical subtraction, single track 

events

● Reduce impact via reduced 
background acceptances

● External data
– FNAL INP will measure low energy 

cross sections in LAr TPCs

– CAPTAIN Minerva will measure 
high energy event vertices on LAr, 
with downstream tracker

– Electron scattering data on Ar from 
JPARC will help constrain nuclear 
models

● Challenges:

– e/ and / cross section ratios

– Distinguishing initial and final state 
nuclear effects

– FSI differences for  and 
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Final State Interactions (FSI)

● Strategy to untangle FSI effects

– FSI for  and e are the same

– Oscillation minima are the same for 
 and 

– For cp = [0,] oscillation min/max 
are the same for  and e

– The appearance max shifts with cp

– Look for a relative shift in eand 
an opposite shift fore

– Understand absolute difference by 
requiring the  and  minima to 
match 

– Requires W and  for e to be 
similar

● External measurements

– N/ scattering off Ar

– Already lots of data

– Compare simulations (GENIE vs 
GiBUU)

● Test Beam measurements

– p/ energy resolutions and 
detection thresholds

– Detector response to n

● Neutrino beam measurements
– Vertex activity

– Rate and angular distribution of 
nucleons

– In situ neutron counting



  29

Final State Interactions (FSI)

● Strategy to untangle

– FSI for  and e are the same

– Oscillation minima are the same 
for  and 

– For cp = [0,] oscillation min/max 
are the same for  and e

– Appearance max shifts with cp

– Look for a relative shift in eand 
an opposite shift fore

– Understand absolute difference by 
requiring the  and  minima to 
match 

– Requires W and  for e to be 
similar

Luckily they are!

P(→ ) = 1.0

P(→ 
e
) = 1.0
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Final State Interactions (FSI)

● Strategy to untangle

– FSI for  and e are the same

– Oscillation minima are the same 
for  and 

– For cp = [0,] oscillation min/max 
are the same for  and e

– Appearance max shifts with cp

– Look for a relative shift in eand 
an opposite shift fore

– Understand absolute difference by 
requiring the  and  minima to 
match 

– Requires W and  for e to be 
similar

Not quite so close after oscillations

Oscillations cause 
energy spectra 

differences



  31

Constraining the Energy Scale

● Test beam measurements
– CERN Prototypes (below)

● Both single- and dual-phase
● Charged particle beam
● Detector response and energy 

calibration reduces energy scale 
uncertainties

– CAPTAIN
● Test LAr TPC neutron response
● What fraction of neutrons do 

deposit observable energy?
● What fraction of the neutron 

energy is deposited?
● What is the time structure?
● Can we apply some neutron 

energy calibration?

● In-situ FD calibration
– Atmospheric muons

● Source of MIPs
● Stability over time and position

– Analysis spectra comparisons

● Split e- appearance samples 

– QE-like(1/3) and non-QE (2/3)

– Use QE kinematic reco.

– Tight cuts on QE-like sample 
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Calculating ND Constraints
● ND Fast MC

– Simulation:
● FGT response based on NOMAD
● dE/dx as a function of  KE from G4 

simulation

– Studies of flux and cross section 
analyses

● Realistic selections give signal 
efficiencies and background rates

● Estimates statistical strengths of 
these measurements 

● Demonstrates methods for 
constraining nuclear effects 

– Next steps
● Evaluate systematics
● Determine potential correlations 

from combined fits

● VALOR
– Full ND+FD fitting oscillation 

analysis software developed for 
T2K

– Applied to LBNE, LBNO, AND 
T2HK simulations

– Combined fit of multiple 
topologically defined samples

– Fit parameters related to flux, 
cross section, and detector 
response, each with a prior

– Most parameters well 
constrained

– Next steps
● Apply to latest DUNE simulations
● Include alternate ND 

configurations
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Concluding Remarks

● There are a large number of systematic uncertainties to consider
● The FD can constrain many systematics itself with 4-sample fits
● There is a comprehensive program underway to understand and 

constrain many sources of systematic uncertainty – especially LAr 
TPC cross section and detector effects

● The DUNE ND will provide excellent flux and cross section 
constraints

● There is a lot of work to be done to determine the impact of each 
systematic and each component of the DUNE experimental setup
– Need to estimate and propagate each uncertainty

– Independent program of study required to ensure systematic uncertainty 
estimates give proper coverage 

● Systematic goals have been set, and design decisions will be 
made to execute those goals
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Backup Slides
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The Deep Underground Neutrino 
Experiment  

New international science collaboration formed in late 2014 with the 
submission of an LOI (https://indico.fnal.gov/getFile.py/access?resId=0&materialId=4&confId=9013)

➔ February 2015 collaboration meeting at FNAL
➔ 776 Collaborators
➔ 144 institutions
➔ Recently passed CD1-refresh review of technical design

➔ 26 countries
➔ Members from LBNE, LBNO and more
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Fast MC Output: Energy Smearing


e
 app

CC 
e


e
 app
NC

 dis

NC


e
 app

CC 


e
 app

CC 

 dis

CC 
e

 dis

CC 

 dis

CC 
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Fast MC Output: Efficiencies


e
 app 

e
 app

 dis  dis
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Oscillation Parameter Uncertainties 
and Exotic Models

● Currently 23 has the largest uncertainties

– Has the largest effect on MH and cp 
measurements

– Unknown octant (is 23 > or < 45°)

● Solar oscillation parameters have effects at 
lower energies, near 2nd oscillation maximum

● Degeneracies between cp and the MH reduce 
sensitivity

– +cp/ NH and -cp/ IH are produce similar spectra

– -cp/ NH, and +cp/ IH are easily distinguished

● Extraction of cp and the MH assume the 
canonical 3-flavor model
– Several “model extensions” that can alter analysis 

spectra expectations

– Sterile neutrinos 

– Non-standard interactions

– Non-unitarity 
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Oscillation Parameter Uncertainties

● The MH determination 
(left) is 
– highly dependent on the 

true value of sin223 (top)

– Less dependent on true 
sin213 (bottom)

● CPV (right) sensitivity 
has a similar 
dependence

● MH determination is 
easier for a high sin223, 
while CPV sensitivity is 
best for low values of 
sin223
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Flux Uncertainties
● Uncertainties in the beamline optics can 

mostly be constrained by beamline 
monitoring and ND data

● Hadron production modeling uncertainties 
are the leading source of flux uncertainties
– Primary interactions in the target are 

constrained by data

– Secondary and tertiary interactions are much 
more difficult to model and constrain

● Flux uncertainties are the leading source 
of error in many cross section 
measurements

● Uncertainties from all sources are routinely 
encoded in a covariance matrix in bins of 
true E Example: NuMI
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Cross Section Models
● Largest uncertainties due to absorption of nuclear model uncertainties
● Need to understanding the roll of nuclear dynamics on the low-Q2 region

– Diagrams involving MEC, 2p2h, etc

– Distinguishing effects from FSI experimentally

– Models starting to work their way into generators

● Single pion production uncertainties seem to be converging
– Explanations for differences between data sets have been provided

– Still questions about transition to DIS region, and contributions from and interference 
with “non-resonant backgrounds”

● DIS interaction uncertainties are dominated by low-W hadronization models
● Coherent interactions are not well constrained, but make only a small 

contribution

● The e and  cross sections have not been (well) measured

– (e)/() is unknown at low energies; may be an issue between 0.5-1.5 GeV (~2nd 
Max)

– ()/() error related to cross section terms prop to lepton mass

● ()/() errors are related to FSI 
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Nuclear Models: Nuclear Initial State
● RFG assumes no nucleon-

nucleon interactions
● These interactions allow 

correlated states
● Changes nucleon momentum 

probability densities
– Important at low Q2

– Exp: Spectral Functions (SF)

● Also introduces new targets
– Meson exchange currents

– 2-partlice / 2-hole states

– Cross section ~20-30% of QE

● Contribution and uncertainties 
now covered by altering MA

QE 
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Nuclear Models: Final State 
Interactions (FSI)

● The good news
– Not neutrino/weak physics

● Can study with external data
● Large detailed data sets

– Several working models of various 
complexity

● The bad news
– It's QCD

– It alters observables

– Convoluted with other sources of 
E uncertainty 

– Relative / uncertainties currently 
provide freedom to mimic cp-like 
effects

● Interactions of final-state 
particles with the nuclear 
medium

● Does not effect cross sections
● Changes hadronic shower and 

reconstructed quantities
– Calorimetric energy estimators

– Signal/Background acceptances

● Energy spectra are convolutions
– Flux, Cross section, Detector 

effects, FSI, and Oscillations

– Difficult to disentangle

– Different for   and  different ybj 
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Detector Response and 
Reconstruction

● The energy scale estimates the  energy from the charge 
deposition in the detector; for DUNE:

1) Reconstruct energy for tracked particles

2) Estimate energy deposition from “hadronic shower fuzz”

3) Correct for missing energy from neutral particles (mostly neutrons)

– Mistakes in any step (esp step 3) can induce a bias

– It is also important to accurately estimate the spread about the mean 
which determines the energy resolution

● Particles of the same type and energy do not deposit identical amounts of charge
● Secondary interactions can alter charge deposition rates and patterns
● FSI can alter the the flavor and momentum of particles exiting the interaction 

vertex

● Energy scale systematics can be dangerous because they can 
shift the reconstructed energy peak, and induce different 
responses for  and 
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Pull Terms for CC M
A

res & CC M
A

QE

● When both MA
res & MA

QE  are allowed to vary the behavior 
of the pulls becomes more complex

● Large fluctuation around “inflection points” is enhanced

● Still constrained within ~0.2
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CPV Fit Spectra and 2 with 
Variations in M

A
res (w/ osc systs)
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CPV Fit Spectra and 2 with 
Variations in M

A
res & M

A
QE 
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